专利摘要:
プラズマ非閉じ込め事象を検出するためのプラズマリアクタ内の構成を提供する。この構成は、プラズマリアクタ内に実装された容量式センサであるセンサを含む。センサは、プラズマ閉じ込め領域の外側に実装され、プラズマ非閉じ込め事象に関連するプラズマに対してセンサが露出された時に過渡電流を生成するように構成される。センサは、プラズマ非閉じ込め事象に関連するプラズマに向けられた少なくとも一枚の電気絶縁層を有する。この構成は、更に、センサに電気的に接続され、過渡電流を過渡電圧信号に変換すると共に、プラズマ非閉じ込め事象が存在するかを確認するために過渡電圧信号を処理する検出回路を備える。
公开号:JP2011507195A
申请号:JP2010538173
申请日:2008-12-12
公开日:2011-03-03
发明作者:アルバレード・リュック;ジャファリアン・ターラニ・セイド・ジャファー;ディンドサ・ラジンダー;ブース・ジャン−ポール;マラクタノブ・アレクセイ
申请人:ラム リサーチ コーポレーションLam Research Corporation;
IPC主号:H05H1-00
专利说明:

[0001] プラズマ処理システムは、基板(半導体ウェーハ等)を処理して集積回路を製造するために以前から利用されてきた。プラズマは、電子サイクロトロン共鳴プラズマ(ECR)、誘導結合プラズマ(ICP)、又は容量結合プラズマ(CCP)等、多様な方法により生成し得る。多くの場合、処理中の基板の真上の領域等、処理チャンバ内の特定の領域にプラズマを閉じ込めることにより、一定の利点が得られる。]
[0002] 説明を容易にするため、図1に、処理中にプラズマを閉じ込めた状態の低圧プラズマリアクタ100を示す。例えば、基板124が、電極110上に配置され、電極110が、チャンバ102に接続された台座120に取り付けられた状況について考える。電極110は、高周波(RF)発電機等の遠隔電源114に、台座120の内部を介して接続される。処理ガス150は、化学物質の混合物にしてよく、ポンプ(図示せず)により低下させ得るチャンバ102内の圧力が所望の水準に達した時に、入口104を介してチャンバ102内へ導入し得る。基板124を処理するために、電極110は、電源114からの電力を処理ガス150に容量結合させ、プラズマ106を形成し得る。通常、プラズマ106は、一組の閉じ込めリング108により、チャンバ102の所望の領域内に閉じ込められる。基板処理中、処理ガス150からの化学成分と、プラズマ106内の反応により形成された化学成分と、基板124の処理による化学副産物との混合物を含み得るプラズマ106からのガスは、出口126を介してチャンバ102から除去される前に、閉じ込めリング108と、非プラズマチャンバ容積128とを通って流動し得る。このルートは、経路136により示しており、通常は、プラズマ106が閉じ込められている場合でも、反応性の高いガスに対するチャンバ102の内部の露出を発生させる。] 図1
[0003] しかしながら、基板124の処理中、プラズマ106は、予期しない制御不能な形で、チャンバ102内の所望の領域の外部へ移動する場合がある。言い換えると、閉じ込めリング108の外側であるチャンバ102の領域において、非閉じ込めプラズマ138が形成される場合がある。非閉じ込めプラズマ138の形成は望ましくなく、これは、非閉じ込めプラズマ138が、基板124の性能の著しい低下、チャンバ102の損傷、及び台座120の損傷のうち少なくとも一つの発生が考えられる形で、処理プラズマ106の品質を変化させる恐れがあるためである。例えば、基板124は、エッチング又は堆積速度の変化により損傷を受ける恐れがあり、及び/又は、非閉じ込めプラズマ138により生成された粒子状欠陥又は元素汚染により汚染されることで損傷を受ける恐れがある。処理チャンバ102及び/又は台座120は、例えば、非閉じ込めプラズマ138への露出の結果としてのチャンバ材料の浸食又は腐食により、物理的に損傷を受ける恐れがある。加えて、チャンバを介してプラズマ電力を接地へ戻す経路を、非閉じ込めプラズマ138が変更する可能性があることから、処理チャンバ102の構成要素は、電気的損傷を被る恐れがある。一例において、電源114からのプラズマ電力は、プラズマ電力を伝達するように設計されていない場合のあるチャンバ構成要素を介して、接地へ戻る恐れがある。]
[0004] 上述したことから分かるように、プラズマ非閉じ込め事象は、多数の異なる要因により発生する場合がある。例えば、プラズマが不安定になった場合、プラズマは、非閉じ込め状態となる可能性がある。別の例において、プラズマ非閉じ込め事象は、処理チャンバ内において電気アークが生じた場合に発生する可能性がある。更に別の例では、プラズマ電力、プラズマ組成、ガス供給流、動作圧等の処理パラメータが変動した場合に、プラズマが非閉じ込め状態となる可能性がある。]
[0005] 更に、プラズマ非閉じ込め事象の発生は、散発的となる場合があり、予測不可能な傾向を有する可能性がある。予測不可能となる理由の一つは、非閉じ込めプラズマが様々な形態を有し得るためである。加えて、プラズマ非閉じ込め事象が基板処理に対して及ぼし得る特異的効果は、非閉じ込めプラズマが示す変わりやすく予測不可能な形態のため、一般に予期できない。例えば、非閉じ込めプラズマは、低密度又は高密度を有し得る。別の例において、非閉じ込めプラズマが占有する空間は、大きい場合又は小さい場合がある。更に別の例において、非閉じ込めプラズマは、安定したプラズマになる場合、或いは、変動性の散発的なプラズマになる場合がある。リアクタ内の非閉じ込めプラズマの位置でさえ、処理中に変化し得る。]
[0006] プラズマ非閉じ込め事象を検出するために、様々な方法が利用されてきた。一方法は、VIプローブ又はラングミュアプローブ等、通常は複数の電極を有する静電プローブを利用して、プラズマ非閉じ込め事象を検出することを含む。一例においては、非保護電極(通常は金属製)となり得るラングミュア型プローブを、チャンバ環境に露出し得る。ラングミュア型プローブは、一般に、プローブをプラズマに露出した際にプラズマから電極へ直流(DC)が流れるように電気的にバイアスされる。例えば、ラングミュア型プローブ122は、所望のプラズマ閉じ込め領域の外側であるプラズマ環境内に位置決めされる。検流器148を利用することで、電源118を介したラングミュア型プローブ122におけるDC電流の変化を検出し得る。更に、DC電源(図示せず)を利用して、プローブにバイアスを加え得る。]
[0007] しかしながら、ラングミュア型プローブの動作要件(即ち、電極が保護されていないこと及びプラズマとのDC電気接触が存在すること)により、プラズマ非閉じ込め事象を検出する際のラングミュア型プローブの有用性は制限される。更に、プラズマ非閉じ込め事象の予測不可能な性質のため、ラングミュア型プローブは、効果を得るために、基板が処理されている間、連続的に動作させる必要が生じ得る。しかしながら、連続的使用の結果として、ラングミュア型プローブの非保護電極は、プラズマ処理中、リアクタチャンバ内に通常存在する化学種の混合物に対して露出される可能性がある。化学種の混合物は、基板の処理用に供給された化学物質と、処理プラズマ内において生成された新たな化学種と、基板の処理中に形成された化学副産物とを含み、一般に、ラングミュア型プローブが適切に機能する能力に悪影響を与える恐れのある腐食性成分及び堆積成分を含む可能性がある。一例において、腐食性成分(例えば、塩素、フッ素、及び臭素等)は、電極を腐食させることにより、プラズマ非閉じ込め事象を適時及び/又は正確に検出できない等、ラングミュア型プローブを適切に機能させなくする恐れがある。加えて、腐食した電極は、処理中の基板に間接的な損傷を与える場合がある粒子状欠陥及び/又は金属汚染のソースとなる可能性がある。別の例において、混合物の堆積成分(例えば、SiOxに基づく無機副産物及びCFxに基づく有機重合物)は、プローブの電極上に電気絶縁膜を形成する場合があり、そのため、膜が、必要なプラズマ−電極間のDC接触に干渉して、プローブが正確及び/又は適時にプラズマの存在を感知することを防止する恐れがある。上述したことから分かるように、ラングミュア型プローブは、プラズマ非閉じ込め事象の検出において理想的ではない場合がある。]
[0008] 利用されてきた別の方法は、処理中の基板のバイアス電圧の変化を特定して、プラズマ非閉じ込め事象を検出することである。図1を参照すると、基板124上のバイアス電圧は、電源114が提供した電力がリアクタ100内のプラズマと相互作用する時に生成され得る。一般には、処理中の基板124上のバイアス電圧を直接測定できるように、センサ140を(例えば、電極110内に)設置し得ると共に、バイアス電圧検出器144を利用して、バイアス電圧を閾値と比較し得る。したがって、プラズマ106の特性が非閉じ込めプラズマ138により変化した時には、センサ140を利用して、バイアス電圧を測定し得る共に、バイアス電圧検出器144を利用して、バイアス電圧の変化を検出し得る。] 図1
[0009] 追加例又は代替例として、バイアス電圧の変化は、基板のバイアス電圧に関連するパラメータの変化を測定することにより、間接的に検出してもよい。例えば、基板のバイアス電圧が非閉じ込めプラズマ138により変化した時、プラズマ106を維持するために電源114が電極110に供給する電力も変化し得る。そのため、プラズマ106に供給される電力をRF電力検出器142により監視することで、プラズマ非閉じ込め事象の検出が可能となり得る。]
[0010] しかしながら、プラズマ非閉じ込め事象を検出するためにバイアス電圧を監視することの有用性は、プラズマ非閉じ込め事象により生じるバイアス電圧の変化を検出することが困難であるために限定される。バイアス電圧の変化を検出することは、高周波の発電機(60MHz等)を利用してプラズマを発生させる場合、特に困難となる。高周波の発電機により発生させたバイアス電圧は小さく、プラズマ非閉じ込め事象は通常低い電力レベルにおいて発生するため、プラズマ非閉じ込め事象をDCバイアス信号の変化から区別することは、困難であるか、或いは検出不可能となる場合がある。したがって、この手法の有用性は、プラズマ非閉じ込め事象を確実に検出できないことから、限定的となる。]
[0011] 更に別の従来技術の手法では、光センサを使用してプラズマ非閉じ込め事象を検出し得る。当業者は、プラズマが一般に光を発することを認識している。したがって、光センサを利用して、非閉じ込めプラズマが発する光を検出し得る。一例において、図1を参照すると、光センサ132は、監視することが望ましいチャンバの領域へ視線(通路134として図示)が延びる状態で、透明窓130に隣接して設置し得る。したがって、プラズマ106が非閉じ込めプラズマ138となった場合、非閉じ込めプラズマ138からの光は、通路134に入り、窓130を通過して、光センサ132により検出され得る。光を検出すると、光センサ132は、光信号検出器146へ信号を送信し得る。信号が所定の閾値を上回った場合、光信号検出器146は、非閉じ込めプラズマ138が検出されたことを示す警報を提供し得る。] 図1
発明が解決しようとする課題

[0012] しかしながら、処理プラズマ106が発する光に比べ、非閉じ込めプラズマ138が発する光は著しく暗いことから、非閉じ込めプラズマ138が発する光を検出することが困難である恐れがあるため、プラズマ非閉じ込め事象を検出するための光センサの利用は、限定される場合がある。加えて、反応化学物質が透明窓130の透明度を低下させる場合があるため、チャンバ102の外側に光センサ132を位置決めすることで、透明窓を介して光を「見ること」が困難となる可能性がある。言い換えると、反応化学物質は、透明窓130に被膜の層を堆積させ、これにより、光センサ132が検出する光の量及び/又は質を大幅に低下させる恐れがある。更に、光センサの有用性は、処理環境への視覚的アクセスが存在することに依存している。しかしながら、監視を必要とする全ての場所に窓及び/又は視認通路を配置することが、常に実現可能であるとは限らない。]
[0013] 様々な方法が実施されてきたが、それぞれの方法は、プラズマ非閉じ込め事象を検出するための信頼性の高い包括的な解決策を提供していない。一例として、ラングミュア型プローブは、プラズマ非閉じ込め事象を特定するプローブの効果に悪影響を与える可能性のある腐食を受けやすい。別の例において、バイアス電圧の変化の特定に応じてプラズマ非閉じ込め事象を決定することは、プラズマ非閉じ込め事象からDCバイアス信号の変化を区別することに依存する可能性がある。両者を区別する能力は、DCバイアス信号が高周波の発電機(60MHz等)により生成される一方、非閉じ込めプラズマが低い電力レベルで発生している場合、困難となる恐れがある。更に別の例において、光センサを利用して非閉じ込めプラズマが発する光を検出することは、視認可能な通路の可用性により、及び/又は、視認可能な通路を「視認不能」にする恐れがある障害物により光の検出が不可能になることから、限定される。]
課題を解決するための手段

[0014] 本発明は、一実施形態において、プラズマ非閉じ込め事象を検出するためのプラズマリアクタ内部の構成に関する。この構成は、プラズマ内に実装される容量式センサであるセンサを含む。センサは、プラズマ閉じ込め領域の外側に実装され、センサがプラズマ非閉じ込め事象に関連するプラズマに露出された時に過渡電流を発生させるように構成される。センサは、プラズマ非閉じ込め事象に関連するプラズマへ向けられた少なくとも一枚の電気絶縁層を有する。この構成は、更に、センサに電気的に接続され、過渡電流を過渡電圧信号に変換すると共に、過渡電圧信号を処理してプラズマ非閉じ込め事象が存在するかを確定する検出回路を含む。]
[0015] 上述した概要は、本明細書において開示した本発明の多数の実施形態のうち一つのみに関しており、本明細書の特許請求の範囲に記載した本発明の範囲を限定するものではない。本発明の上記その他の特徴は、本発明の詳細な説明において、次の図面と併せて、以下更に詳細に説明する。]
図面の簡単な説明

[0016] 本発明は、同様の参照符号が同様の要素を示す添付図面の各図において、限定としてではなく一例として図示される。]
[0017] 処理中にプラズマを閉じ込める従来技術のプラズマ処理チャンバの例を示すと共に、プラズマ非閉じ込め事象を検出するための現行の戦略を示す図である。]
[0018] 本発明の一実施形態による、プラズマ処理中のプラズマリアクタを示す簡略図である。]
[0019] 本発明の一実施形態における、容量式センサの実装を示す図である。]
[0020] 本発明の一実施形態における、長方形の容量式センサの例を示す図である。]
[0021] 本発明の一実施形態における、二枚の電気絶縁外層を有するセンサの断面の例を示す図である。]
[0022] プラズマ検出回路の実施形態を示す概略図である。
プラズマ検出回路の実施形態を示す概略図である。]
[0023] 次に、添付図面に図示した幾つかの好適な実施形態を参照して、本発明を詳細に説明する。以下の説明では、本発明を完全に理解するために、多数の具体的な詳細を述べる。しかしながら、こうした具体的な詳細の一部又は全部が無くとも本発明を実施し得ることは、当業者には明らかであろう。また、周知のプロセスステップ及び/又は構造は、本発明を不必要に曖昧にしないために、詳細な説明を省略する。]
[0024] 以下、方法及び手法を含む様々な実施形態を説明する。本発明は、本発明の手法の実施形態を実行するためのコンピュータ読み取り可能な命令を格納したコンピュータ読み取り可能な媒体を含む製品も対象とし得ることに留意されたい。コンピュータ読み取り可能な媒体は、例えば、コンピュータ読み取り可能なコードを格納するための、半導体、磁気、光磁気、光学、又は他の形態のコンピュータ読み取り可能な媒体を含み得る。更に、本発明は、本発明の実施形態を実現する装置を対象とし得る。こうした装置は、本発明の実施形態に関連するタスクを実行する、専用及び/又はプログラム可能な回路を含み得る。こうした装置の例は、適切にプログラムされた場合には汎用コンピュータ及び/又は専用コンピューティングデバイスを含み、更に、本発明の実施形態に関連する様々なタスクに適した、コンピュータ/コンピューティングデバイスと専用/プログラム可能回路との組み合わせを含み得る。]
[0025] 本発明の実施形態によれば、容量式センサ等のプラズマ非閉じ込めセンサを提供して、プラズマ処理システム内のプラズマ非閉じ込め事象を検出する。本発明の実施形態は、プラズマ処理環境の特色である腐食及び堆積に影響されないセンサを含む。本発明の実施形態は、更に、少なくともプラズマ処理システム内の非閉じ込め事象を決定するように構成された検出回路に取り付けるべきセンサを含む。]
[0026] 一実施形態において、センサは、一実施形態では一枚以上の電気絶縁層により保護された導電性の基板を含み得る。センサが非閉じ込め事象に露出された場合には、電気絶縁層に渡って発生した過渡電流が、センサを介して回路変換器へ流れ得る。回路変換器は、一実施形態において、過渡電流を過渡電圧信号へ転換するように構成される。過渡電圧信号は、過渡電圧信号から高周波成分を除去する等、信号対ノイズ特性を改善するために、ローパスフィルタを介して送信してよい。追加又は代わりとして、過渡電圧信号は、少なくとも付加的な周波数を除去するように構成された、一組の共鳴フィルタ(LCフィルタ等)を介して送信し得る。過渡電圧信号を調整した後、信号を所定の閾値と比較して、プラズマ非閉じ込め事象の存在を決定し得る。]
[0027] 上述したことから分かるように、センサはプラズマ処理中に発生し得る腐食又は堆積に影響されないように構成されるため、センサは、プラズマ処理中に連続して動作可能であり、そのため、分離したプラズマの事象を検出する可能性及び適時性が改善される。更に、検出回路により、センサが感知した過渡電流を、プラズマ非閉じ込め事象の存在を決定するために利用できる明瞭且つ堅牢な信号へ転換することが可能となる。]
[0028] 本発明の特徴及び利点は、以下の図面及び説明を参照することにより更に良く理解し得る。]
[0029] 図2は、本発明の実施形態による、プラズマ処理中のプラズマリアクタ200の簡略図を示す。プラズマリアクタ200は、プラズマ非閉じ込め事象の検出が望ましい領域内に位置決めされるように構成された電極210(例えば、容量式センサ)を含み得る。言い換えると、領域は、プラズマ閉じ込め領域214の外部となり得る。一例において、電極210は、電極210の外面を、非閉じ込めプラズマ212等の非閉じ込めプラズマに露出可能な形で取り付け得る。] 図2
[0030] プラズマに固有の特徴のため、プラズマに露出された表面では、重いプラズマ成分(例えば、分子イオン)と相互作用する軽いプラズマ成分(例えば、電子)の速度の差の結果として、電荷が生じ得る。したがって、電極210を非閉じ込めプラズマ212に対して露出させる時、電極210の外面は、帯電プロセスを受ける。外部電極210の表面は、非閉じ込めプラズマ212の特定の特性に応じて、負又は正に帯電し得る。帯電プロセスは、通常、電極210の外面が非閉じ込めプラズマ212との平衡状態となる電荷量を達成するまで発生するため、帯電プロセスは、通常、過渡プロセスである。]
[0031] 一実施形態において、電極210の外面の過渡帯電プロセスが発生している間、外面過渡電荷とは反対の電荷を有する過渡電荷が、電極210内において誘発され得る。非閉じ込めプラズマの存在を適時に特定するために、過渡電荷により誘発された過渡電流は、変換回路222により、過渡電圧信号へ変換する。過渡電圧信号はノイズを含み得るため、ローパスフィルタ224を利用して、ノイズを除去してよい。一例において、ローパスフィルタ224は、高周波成分(例えば、高周波ノイズ)を除去し、これにより過渡電圧信号を改良するために利用し得る。過渡電圧信号を調整済み信号へ変換するために、一実施形態では、一組の共鳴LCフィルタ226を利用して、プラズマを発生させるために一般に使用されるもの等、特定の周波数を遮断してよい。調整済み信号は、その後、調整済み信号を所定の閾値と比較するように構成し得る閾値検出器228へ転送してよい。調整済み信号が所定の閾値を上回る場合、閾値検出器238は、非閉じ込めプラズマが検出されたことを示す警報を発生させ、これにより、適切な処置を行うことを可能にし得る(例えば、プラズマを消して、基板の処理を停止させ得る)。]
[0032] 図3Aは、本発明の一実施形態における、容量式センサの実装を示す。図2において述べたように、容量式センサ302は、プラズマリアクタのチャンバ壁318に物理的に取り付けてよい。一実施形態において、容量式センサ302は、少なくとも二種類の構成要素、即ち、電気絶縁外層308と、導電基板304とを含み得る。一実施形態において、容量式センサ302は、絶縁体316により取り付け面から電気的に分離される。非閉じ込めプラズマにより過渡電荷が生成されると、過渡電流は、電気接点306を介して導電基板304に結合された伝導接点314へ送電し得る。過渡電荷は、クランプ312により伝導接点314に固定し得るワイヤ310を介して、検出回路(図示せず)へ送電し得る。] 図2 図3A
[0033] 導電基板304は、様々な材料により作成してよい。一実施形態において、導電基板304は、金属(例えば、Al、Cu、Ag、Au、Feに基づくもの等)又は金属の組み合わせ/合金等の導電性材料により作成し得る。導電基板304は、一実施形態において、例えば、高ドープシリコン等の半導体材料により作成してもよい。一実施形態において、導電基板304は、導電性セラミック材料(例えば、炭化ケイ素)又は導電性セラミックの組み合わせにより作成し得る。追加又は代わりとして、導電基板304は、一実施形態において、導電性ポリマ又は非導電性ポリマの何れかにより作成し得る。一例において、導電性ポリマは、導電性の「充填剤」を含有する有機ポリマ、有機ポリアニリンに基づくポリマ、及びポリアニリンに基づくポリマの混合物を含み得る。更に別の実施形態において、導電基板304は、例えば、導電性シリコン等、導電性の無機ポリマにより作成し得る。上述したことから分かるように、導電基板304は、上述した導電性材料の何れか又は全ての組み合わせにより作成し得る。]
[0034] 一実施形態において、電気絶縁外層308は、SiO2の形態(例えば、石英又はガラス)、セラミック(例えば、Al2O3)、商用ポリマ(例えば、PTFE、ポリイミド、シリコン等)、プラズマ処理の副産物であるポリマ(例えば、CFxに基づくポリマ)、又は上述したものの何れか又は全ての組み合わせ等、電気絶縁性材料により作成し得る。導電外層308は、一実施形態において、プラズマリアクタ内で一般に使用され得る化学物質及びプラズマの混合物に適合し得る電気絶縁材料により作成し得る。一例において、陽極酸化アルミニウムは基板処理のために一般に使用される化学物質に対して比較的不活性であるため、陽極酸化アルミニウムは、プラズマエッチングリアクタ(図1に示したもの等)の内部において見られる一般的な構成要素となる。したがって、プラズマ処理中に利用される化学物質に適合する陽極酸化アルミニウム等の電気絶縁性材料により作成された電気絶縁外層308は、電気絶縁外層(308)により保護されたセンサがプラズマ環境に影響されないようにすると共に、電気絶縁外層が金属又は粒子状欠陥のソースとなることを防止する。] 図1
[0035] 別の実施形態において、電気絶縁外層308は、導電基板304から成長させ得る。一例において、電気的外層308を特徴付けし得る陽極酸化アルミニウムは、アルミニウム基板から成長させ得る。別の例において、電気絶縁外層308は、導電基板304上に堆積させた膜から成長させ得る。膜は、化学蒸着、プラズマ化学蒸着、スパッタリング等、複数の一般的な堆積手法により堆積させ得る。更に別の例において、電気絶縁外層308は、容射、焼結、熱接合等、複数の一般的な付与手法により導電基板304上に付与し得る。]
[0036] 電気絶縁外層308の厚さは、絶縁材料の種類に応じて変化し得る。一実施形態において、電気絶縁外層308の厚さは、導電基板304を電気的に絶縁するために十分な厚さにする一方で、検出回路において検出できる測定可能な電圧を形成するために、容量式センサ302がプラズマに露出された時に、依然として適切な電気容量が発生可能となるようにする必要がある。一実施形態において、膜の厚さは、10乃至100マイクロメートルの範囲にし得る。]
[0037] 上述したことから分かるように、一組の電気絶縁外層により、導電基板304が、非閉じ込めプラズマに対して露出されるセンサ(302)の外面324から電気的に分離される限り、導電基板304に付与し得る電気絶縁外層の数は、変更し得る。例えば、図3Cは、本発明の一実施形態における、二枚の電気絶縁外層320及び322を有する容量式センサ302の断面の例を示す。一例において、電気絶縁外層322は、容量式センサ302の製造の一環として、電気絶縁外層320上に付与し得る。この例において、電気絶縁外層320は、導電基板304に対する電気絶縁外層322の接着を向上させる「中間接着層」となり得る。別の例において、電気絶縁外層320は、電気絶縁外層322と導電基板304との間の熱膨張係数を有し得る。熱膨張係数により、容量式センサ302では、熱サイクルの影響による亀裂又は剥離に対する耐性を強化し得る。] 図3C
[0038] 第三の例において、電気絶縁外層322は、基板が処理されている間に処理チャンバに存在する反応ガスに対して露出されることにより、電気絶縁外層320上に形成された堆積層を表し得る。容量式センサ302はキャパシタのように動作し得るため、容量式センサ302は、センサの表面上における追加層の形成に影響されない状態となり得る。したがって、ラングミュア型プローブとは異なり、電気絶縁外層の形成により、センサが非閉じ込めプラズマを検出する能力は無くならない。]
[0039] 図3Aを再び参照すると、絶縁体316と、電導接点314と、クランプ312との特定の組み合わせは、特定の用途に合わせて特別に作成してよく、或いは、任意の数の市販の真空フィードスルーデバイスに置き換えてもよい。] 図3A
[0040] 加えて、容量式センサ302は、多様な形でチャンバに取り付けてよい。一実施形態において、容量式センサ302は、図3Aに示したように、チャンバ壁318に極めて近接して取り付けてよい。別の実施形態において、容量式センサ302は、チャンバ壁318と同一平面にしてよい、更に別の実施形態において、容量式センサ302は、チャンバ壁318から離して(ロッド又は台座の端部等に)取り付けてもよい。] 図3A
[0041] 一実施形態において、容量式センサ302は、様々な幾何学的形状にし得る。上述したことから分かるように、容量式センサ302の形状は、製造者の好みに基づいてよく、或いは、取り付け場所に依存してもよい。一実施形態では、図3Bに示したように、容量式センサ302は、x及びyの寸法が約1インチ、厚さzが0.05インチである長方形の「ボタン」にしてよい。別の実施形態において、容量式センサ302は、円形台座又は円形チャンバといった環境内の他の構成要素を考慮して、リング等の環状にしてよい。通常、感度は、非閉じ込めプラズマ(外部体積全体を占めるとは限らない)に接触するプローブの表面積に比例する。したがって、大きなプローブは、大きな信号をもたらし得るが、より多くのノイズを捕らえる可能性もある。更に、非常に大きなプローブは、例えば、RF電流の帰還経路を変化させることにより、通常のプラズマプロセスを乱す危険性を有する場合がある。したがって、センサの形状及びサイズは、上述した基準を前提として、製造者の好みに依存する。] 図3B
[0042] 上述したように、過渡電流が生成された後、過渡電流は、非閉じ込めプラズマの存在を決定するために検出回路へ送信し得る。次の幾つかの図(図4A及び4B)は、過渡信号の検出回路への流れの例である。] 図4A
[0043] 図4Aは、本発明の一実施形態における、容量式センサ及び検出回路の両方の電気モデルの一例を示す。ボックス402は、容量式センサの回路モデルの一例を示す。容量式センサの外面(プラズマに露出される表面)は、プレート404により表している。キャパシタ406及び408は、容量式センサの導電基板上に存在し得る電気絶縁外層をそれぞれ表す。上述したことから分かるように、導電基板上の追加層は、電気モデルにおける追加電気容量として図示し得る(逆も同様)。一実施形態において、導電基板上の一組の電気絶縁外層の電気容量は、支配的な電気容量となる。言い換えると、プラズマ堆積産物の層の形成による追加電気容量は、一連の中で最小のキャパシタが支配的なものとなるため、検出器の外層の電気容量に対して大きくなり得る。通常、膜の一般的な容量値は、表面積1平方センチメートル当たり約0.1nFとなり得る。] 図4A
[0044] ボックス410、420、及び430は、検出回路の回路モデルの一例を示す。ボックス410は、電流−電圧変換器(即ち、回路変換器)のモデルの例を示す。電流−電圧変換器は、プレート404のプラズマに対する露出による電荷から生じた過渡電流を変換するように構成される。一例において、プラズマに対する露出によりキャパシタ406及び408全体で生じる過渡電流は、抵抗414を介して電気接地416へ流れることが可能であり、これにより、過渡電流は、点412において読み取り得る過渡電圧信号へ変換される。一実施形態において、抵抗414は、1乃至100kオームの値を有し得る。]
[0045] 点412において生成された過渡電圧信号は、その後、信号対ノイズ特性を改善するために調整し得る。一実施形態において、過渡電圧信号は、ボックス420に図示した回路の例のようなローパスフィルタを通過し得る。一実施形態において、ローパスフィルタ420は、キャパシタ424に接続された抵抗422を含んでよく、キャパシタ424は接地426に接続される。要素422及び424の組み合わせは、過渡電圧信号から高周波成分を除去する役割を果たす。一実施形態において、抵抗422は、100オームの値を、キャパシタ424は、約100nFの値を有し得る。]
[0046] 過渡電圧信号の信号対ノイズ特性は、一実施形態において、過渡電圧信号を、ボックス430に存在する二例のような、一組の共鳴LCフィルタ群に通すことで更に改善される。第一のLCフィルタは、キャパシタ434と並列にインダクタ432を含み得る。同様に、第二のLCフィルタは、キャパシタ438と並列にインダクタ436を含み得る。一組の共鳴LCフィルタ群により、既知の及び/又は予期される周波数を除去し選択的に遮断することにより、過渡電圧信号を改善し得る。例えば、プロセスプラズマに、異なる周波数(例えば、13.56MHz及び28MHz)で動作する二個の独立したRF発電機により電力を供給する場合、プラズマに露出された容量式センサから生じた過渡電圧信号は、両方の周波数を含み得る。こうした周波数の大きさは過渡電圧信号の検出に干渉し得るため、一組の共鳴LCフィルタ群を利用して周波数を遮断してよい。一例において、キャパシタ434と並列のインダクタ432は、13.56MHz成分を遮断し、キャパシタ438と並列のインダクタ436は、28MHz成分を遮断し得る。通常、一般的に利用され得る周波数の種類(例えば2.27及び60MHz)が、遮断され得る周波数の種類となり得る。しかしながら、一組の共鳴LCフィルタ群は、上述した周波数のみを遮断するものに限定されず、一定範囲の周波数(例えば、500kHz乃至200MHz)を遮断し得る。上述したことから分かるように、遮断し得る周波数の種類は、使用者の好みにより決めてよい。]
[0047] 過渡電圧がフィルタリングされると、点440において調整済み信号が生成され得る。一実施形態において、調整済み信号(即ち、共鳴LCフィルタボックス430からの出力)は、閾値検出器(図示せず)へ送信し得る。閾値検出器は、調整済み信号を所定の閾値と比較して、プラズマ非閉じ込め事象が発生しているかを判断し得る。]
[0048] 或いは、検出回路は、図4Bに図示したように実現し得る。図4Bに図示した検出回路は、追加のキャパシタ418を除き、図4Aの検出回路と同様である。一実施形態において、キャパシタ418は、ボックス410の電流−電圧変換器内に実装し得る。ボックス402内の容量式センサは短絡を生じる場合があるため、キャパシタ418は、検出回路の下流の構成要素(即ち、ボックス420、430、閾値検出器等)を損傷から守る何らかの保護を提供し得る。一実施形態において、キャパシタ418は、100nFの値を有し得る。一例において、容量式センサの一組の外層が損傷を受け、容量式センサの電気絶縁特性が損なわれるようになった場合、ボックス402のモデルキャパシタ406及び408は、容量式センサ(即ち、プレート404)と、ボックス410内の点412に接続された検出回路構成要素との間の直接的な電気接続に置き換わり、検出回路は、短絡して損傷を受ける恐れもある。しかしながら、キャパシタ418により、プラズマと検出構成要素との間の直接接続を防止し、これにより、検出回路が損傷を受けることを防止し得る。加えて、短絡の状況のため、キャパシタ418が非閉じ込めプラズマに対して露出状態となっても、生成される過渡電圧信号は、非短絡センサに関連する過渡電圧信号とは、検出可能な形で異なる。結果として、閾値検出器は、二種類の過渡電圧信号を区別することが可能であり、容量式センサが損傷を受けたという判断を行うことも可能となり得る。] 図4A 図4B
[0049] 上述したことから分かるように、本発明の一つ以上の実施形態は、非閉じ込めプラズマを検出するためのプラズマ非閉じ込めセンサを提供する。プラズマ非閉じ込めセンサの導電性基板を保護する一組の電気絶縁外層を有するため、プラズマ非閉じ込めセンサがプラズマ環境から保護されることで、プラズマ非閉じ込めセンサは、重要なセンサ構成要素の腐食及び/又はセンサの導電基板における電気絶縁膜の堆積による性能劣化を被ることなく、機能することができる。電圧信号から外部ノイズを除去することが可能な検出回路により、電圧信号が高品質になり得るため、閾値検出器には、プラズマ非閉じ込め事象を検出し得る明瞭な信号が提供される。]
[0050] 本発明を幾つかの好適な実施形態により説明してきたが、本発明の範囲に含まれる変形例、置換例、及び等価物が存在する。本明細書では様々な例を提示しているが、これらの例は例示的なものであり、本発明を限定するものではない。]
実施例

[0051] 名称及び概要は、便宜上、本明細書に記載しているものであり、本明細書の特許請求の範囲を解釈するために使用するべきではない。更に、要約は、非常に短縮された形式で書かれており、便宜上、本明細書に記載しているため、特許請求の範囲において表現された本発明全体を解釈又は限定するために利用するべきではない。本明細書において「一組」という用語が利用される場合、こうした用語は、ゼロ、一個、又は一個より多くの部材を対象とする一般的に理解される数学的意味を有するものである。更に、本発明の方法及び装置を実現する仕組みが他にも多数存在することに留意されたい。したがって、添付特許請求の範囲は、本発明の本来の趣旨及び範囲内に入るこうした全ての変形例、置換例、及び等価物を含むと解釈されるべきである。]
权利要求:

請求項1
プラズマ非閉じ込め事象を検出するためのプラズマリアクタ内の構成であって、前記プラズマリアクタ内に実装された容量式センサであり、プラズマ閉じ込め領域の外側に実装され、前記プラズマ非閉じ込め事象に関連するプラズマに対して露出された時に過渡電流を生成するように構成され、前記プラズマ非閉じ込め事象に関連する前記プラズマに向けられた少なくとも一枚の電気絶縁層を有するセンサと、前記センサに電気的に接続され、前記過渡電流を過渡電圧信号に変換すると共に、前記プラズマ非閉じ込め事象が存在するかを確認するために前記過渡電圧信号を処理する検出回路と、を備える構成。
請求項2
請求項1記載の構成であって、前記検出回路は、電圧変換器を含み、前記電圧変換器は、前記過渡電流を前記過渡電圧信号に変換するように構成されている、構成。
請求項3
請求項2記載の構成であって、前記検出回路は、更に、ローパスフィルタを含み、前記ローパスフィルタは、前記過渡電圧信号から高周波成分を除去するように構成されている、構成。
請求項4
請求項3記載の構成であって、前記検出回路は、更に、一組の共鳴フィルタ群を含み、前記一組の共鳴フィルタ群は、プロセスプラズマを生成することに通常関連する周波数をブロックして、調整済み信号を生成するように構成されている、構成。
請求項5
請求項4記載の構成であって、前記検出回路は、更に、閾値検出器を含み、前記閾値検出器は、前記調整済み信号を閾値と比較することにより、前記プラズマ非閉じ込め事象の発生を特定するように構成されている、構成。
請求項6
プラズマリアクタ内でのプラズマ処理中にプラズマ非閉じ込め事象を検出する方法であって、前記プラズマリアクタ内に実装された容量式センサであり、プラズマ閉じ込め領域の外側に実装され、前記プラズマ非閉じ込め事象に関連する前記プラズマに向けられた少なくとも一枚の電気絶縁層を有するセンサが、前記プラズマ非閉じ込め事象に関連するプラズマに対して露出された時に、過渡電流を生成するステップと、前記センサに電気的に接続された検出回路により、前記過渡電流を過渡電圧信号に変換するステップと、前記プラズマ非閉じ込め事象が存在するかを確認するために前記過渡電圧信号を処理するステップと、を備える方法。
請求項7
請求項6記載の方法であって、前記過渡電流を前記過渡電圧信号に変換する前記ステップは、前記検出回路の一部である電圧変換器により実行される、方法。
請求項8
請求項7記載の方法であって、前記過渡電圧信号を処理する前記ステップは、前記検出回路の一部であるローパスフィルタを介して、高周波成分を除去するステップを含む、方法。
請求項9
請求項8記載の方法であって、前記過渡電圧信号を処理する前記ステップは、前記検出回路の一部であり且つプロセスプラズマを生成することに通常関連する周波数をブロックするように構成された一組の共鳴フィルタ群を利用することにより、前記過渡電圧信号を調整済み信号に転換するステップを含む、方法。
請求項10
請求項9記載の方法であって、前記過渡電圧信号を処理する前記ステップは、前記検出回路の一部である閾値検出器を介して、前記調整済み信号を閾値と比較することにより、前記プラズマ非閉じ込め事象を特定するステップを含む、方法。
請求項11
プラズマ非閉じ込め事象を検出するためのプラズマリアクタ内の構成であって、前記プラズマリアクタ内に実装された容量式センサであり、プラズマ閉じ込め領域の外側に実装され、前記プラズマリアクタのチャンバ壁において、絶縁体により前記チャンバ壁から電気的に分離された状態で取り付けられ、外面が前記プラズマ非閉じ込め事象に関連するプラズマに対して露出された時に過渡電流を生成するように構成され、前記プラズマ非閉じ込め事象に関連する前記プラズマに向けられた少なくとも一枚の電気絶縁層を有するセンサと、前記センサに電気的に接続された検出回路と、を備え、前記検出回路は、少なくとも、前記過渡電流を前記過渡電圧信号に変換するように構成された電圧変換器と、前記過渡電圧信号から高周波成分を除去するように構成されたローパスフィルタと、プロセスプラズマを生成することに通常関連する周波数をブロックして、調整済み信号を生成するように構成された一組の共鳴フィルタ群と、前記プラズマ非閉じ込め事象が存在するかを確認するように構成された閾値検出器と、を含む、構成。
請求項12
請求項11記載の構成であって、前記電圧変換器は、前記センサと下流の検出構成要素との間の直接接続を防止し、これにより、前記センサが短絡を生じた時に前記下流の検出構成要素を保護するように構成されたキャパシタを含む、構成。
請求項13
請求項12記載の構成であって、前記ローパスフィルタは、接地されたキャパシタに結合された抵抗を含む、構成。
請求項14
請求項13記載の構成であって、前記一組の共鳴フィルタ群のうち少なくとも一つの共鳴フィルタは、キャパシタと並列にインダクタを含む、構成。
請求項15
請求項14記載の構成であって、前記センサは、金属、複数金属の合金、半導体材料、導電性セラミック材料、及びポリマの少なくとも一つから作られた導電基板を含む、構成。
請求項16
請求項11記載の構成であって、前記電気絶縁層は、ガラス材料、石英材料、セラミック材料、ポリマ材料、及び陽極酸化アルミニウムの少なくとも一つから作られる、構成。
請求項17
請求項11記載の構成であって、前記センサは、前記プラズマリアクタの前記チャンバ壁と同一平面にある、構成。
請求項18
請求項11記載の構成であって、前記センサは、前記プラズマリアクタの前記チャンバ壁に取り付けられたロッドに装着される、構成。
請求項19
請求項11記載の構成であって、前記センサは、長方形形状を有する、構成。
請求項20
請求項11記載の構成であって、前記センサは、環状形状を有する、構成。
类似技术:
公开号 | 公开日 | 专利标题
US10141163B2|2018-11-27|Controlling ion energy within a plasma chamber
JP6104813B2|2017-03-29|プラズマ処理システムおよびこれを制御する方法
US9541514B2|2017-01-10|Method and apparatus for diagnosing status of parts in real time in plasma processing equipment
TW483037B|2002-04-11|Semiconductor manufacturing apparatus and method of processing semiconductor wafer using plasma, and wafer voltage probe
US6736944B2|2004-05-18|Apparatus and method for arc detection
US7829468B2|2010-11-09|Method and apparatus to detect fault conditions of plasma processing reactor
US6813534B2|2004-11-02|Endpoint detection in substrate fabrication processes
KR100405578B1|2003-11-14|반도체 장치의 제조 방법
TWI290809B|2007-12-01|Procedure and device for the production of a plasma
US5407524A|1995-04-18|End-point detection in plasma etching by monitoring radio frequency matching network
US5184398A|1993-02-09|In-situ real-time sheet resistance measurement method
US6967109B2|2005-11-22|Process monitoring methods in a plasma processing apparatus, monitoring units, and a sample processing method using the monitoring units
JP6227711B2|2017-11-08|Sensor wafer and method of manufacturing sensor wafer
US6072313A|2000-06-06|In-situ monitoring and control of conductive films by detecting changes in induced eddy currents
US6885153B2|2005-04-26|Plasma processing apparatus and method
US5660672A|1997-08-26|In-situ monitoring of conductive films on semiconductor wafers
EP1840937B1|2014-05-07|Plasma processing apparatus and plasma processing method
JP4607517B2|2011-01-05|プラズマ処理装置
US6063234A|2000-05-16|Temperature sensing system for use in a radio frequency environment
JP3296292B2|2002-06-24|エッチング方法、クリーニング方法、及びプラズマ処理装置
KR101813490B1|2017-12-29|플라즈마 처리 장치, 플라즈마 처리 방법 및 플라즈마 처리 장치의 제어 방법
US10777393B2|2020-09-15|Process condition sensing device and method for plasma chamber
CN101460656B|2011-07-13|通过采用平面离子流探测装置获得的参数控制等离子工艺
US8545669B2|2013-10-01|Sensor array for measuring plasma characteristics in plasma processing environments
JP4020318B2|2007-12-12|容量式圧力センサ
同族专利:
公开号 | 公开日
US20110128017A1|2011-06-02|
TW200944062A|2009-10-16|
US8894804B2|2014-11-25|
TWI492671B|2015-07-11|
CN101970166B|2013-05-08|
KR101533473B1|2015-07-02|
WO2009076568A3|2009-08-06|
CN101970166A|2011-02-09|
KR20100098438A|2010-09-06|
JP5420562B2|2014-02-19|
WO2009076568A2|2009-06-18|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
JP2003273088A|2002-03-19|2003-09-26|Tokyo Electron Ltd|プラズマリーク検出装置及び処理システム|
US20070075036A1|2005-09-30|2007-04-05|Paul Moroz|Method and apparatus for measuring plasma density in processing reactors using a short dielectric cap|
JP2009543298A|2006-06-28|2009-12-03|ラムリサーチコーポレーション|プラズマ処理チャンバの非拘束状態の検出方法および装置|KR102175085B1|2019-08-01|2020-11-05|세메스 주식회사|기판 처리 장치 및 기판 처리 방법|US4006404A|1976-01-30|1977-02-01|The United States Of America As Represented By The Secretary Of The Navy|Pulsed plasma probe|
US4846920A|1987-12-09|1989-07-11|International Business Machine Corporation|Plasma amplified photoelectron process endpoint detection apparatus|
US5861577A|1992-06-05|1999-01-19|Hitachi Construction Machinery Co., Ltd.|Seal structure for member-passing-through hole bored in metal partition member|
US5759424A|1994-03-24|1998-06-02|Hitachi, Ltd.|Plasma processing apparatus and processing method|
JPH0831806A|1994-07-20|1996-02-02|Hitachi Ltd|プラズマ処理装置|
WO1996030774A1|1995-03-27|1996-10-03|Hitachi Electronics Services Co., Ltd.|Noise detecting and recording device|
US5907820A|1996-03-22|1999-05-25|Applied Materials, Inc.|System for acquiring and analyzing a two-dimensional array of data|
JPH1079372A|1996-09-03|1998-03-24|Matsushita Electric Ind Co Ltd|プラズマ処理方法及びプラズマ処理装置|
GB9620151D0|1996-09-27|1996-11-13|Surface Tech Sys Ltd|Plasma processing apparatus|
US6174450B1|1997-04-16|2001-01-16|Lam Research Corporation|Methods and apparatus for controlling ion energy and plasma density in a plasma processing system|
JP3949268B2|1998-04-20|2007-07-25|日本碍子株式会社|耐食性セラミックス部材|
US6242360B1|1999-06-29|2001-06-05|Lam Research Corporation|Plasma processing system apparatus, and method for delivering RF power to a plasma processing|
WO2002054091A2|2001-01-08|2002-07-11|Tokyo Electron Limited|Capacity coupled rf voltage probe|
JP4270872B2|2001-03-16|2009-06-03|東京エレクトロン株式会社|インピーダンスをモニターするシステム並びに方法|
JP4035418B2|2001-10-31|2008-01-23|株式会社本田電子技研|近接スイッチおよび物体検出装置|
TWI239794B|2002-01-30|2005-09-11|Alps Electric Co Ltd|Plasma processing apparatus and method|
JP3977114B2|2002-03-25|2007-09-19|株式会社ルネサステクノロジ|プラズマ処理装置|
US7199327B2|2002-06-28|2007-04-03|Tokyo Electron Limited|Method and system for arc suppression in a plasma processing system|
JP2004047696A|2002-07-11|2004-02-12|Matsushita Electric Ind Co Ltd|プラズマドーピング方法及び装置、整合回路|
JP4186536B2|2002-07-18|2008-11-26|松下電器産業株式会社|プラズマ処理装置|
US20040016402A1|2002-07-26|2004-01-29|Walther Steven R.|Methods and apparatus for monitoring plasma parameters in plasma doping systems|
US20040127030A1|2002-12-31|2004-07-01|Tokyo Electron Limited|Method and apparatus for monitoring a material processing system|
US20040127031A1|2002-12-31|2004-07-01|Tokyo Electron Limited|Method and apparatus for monitoring a plasma in a material processing system|
JP2004335594A|2003-05-02|2004-11-25|Matsushita Electric Ind Co Ltd|プラズマ処理装置|
US7054173B2|2003-05-07|2006-05-30|Toshiba International Corporation|Circuit with DC filter having a link fuse serially connected between a pair of capacitors|
US6902646B2|2003-08-14|2005-06-07|Advanced Energy Industries, Inc.|Sensor array for measuring plasma characteristics in plasma processing environments|
CN1614308A|2003-11-07|2005-05-11|中国科学院力学研究所|交流等离子体裂解废弃物成套装置|
JP2005214932A|2004-02-02|2005-08-11|Daihen Corp|信号処理装置、この信号処理装置を用いた電圧測定装置及び電流測定装置|
US7292191B2|2004-06-21|2007-11-06|Theodore Anderson|Tunable plasma frequency devices|
CN101048842A|2004-10-04|2007-10-03|优利讯美国有限公司|改善等离子体蚀刻均匀性的方法和设备|
KR20060061122A|2004-12-01|2006-06-07|삼성전자주식회사|플라즈마 처리 장치|
EP1675444B1|2004-12-22|2008-02-13|Commissariat A L'energie Atomique|Process for determining local emissivity profile of suprathermal electrons|
US20060151429A1|2005-01-11|2006-07-13|Hiroyuki Kitsunai|Plasma processing method|
US20060171848A1|2005-01-31|2006-08-03|Advanced Energy Industries, Inc.|Diagnostic plasma sensors for endpoint and end-of-life detection|
US20060180570A1|2005-02-14|2006-08-17|Mahoney Leonard J|Application of in-situ plasma measurements to performance and control of a plasma processing system|
JP2006294658A|2005-04-06|2006-10-26|Matsushita Electric Ind Co Ltd|プラズマ処理装置|
US7960670B2|2005-05-03|2011-06-14|Kla-Tencor Corporation|Methods of and apparatuses for measuring electrical parameters of a plasma process|
US20060275541A1|2005-06-07|2006-12-07|Weimer Wayne A|Systems and method for fabricating substrate surfaces for SERS and apparatuses utilizing same|
US7202711B2|2005-09-07|2007-04-10|Delphi Technologies, Inc.|Technique for determining a load current|
US20070074812A1|2005-09-30|2007-04-05|Andrej Mitrovic|Temperature control of plasma density probe|
US7425863B2|2005-12-13|2008-09-16|Broadcom Corporation|Tuneable filters using operational amplifiers|
KR100699775B1|2006-01-03|2007-03-28|이호경|강관파일의 두부보강장치|
US7538562B2|2006-03-20|2009-05-26|Inficon, Inc.|High performance miniature RF sensor for use in microelectronics plasma processing tools|
US8080479B2|2007-01-30|2011-12-20|Applied Materials, Inc.|Plasma process uniformity across a wafer by controlling a variable frequency coupled to a harmonic resonator|
US8244494B2|2007-04-06|2012-08-14|Hypertherm, Inc.|Plasma insensitive height sensing|
US9074285B2|2007-12-13|2015-07-07|Lam Research Corporation|Systems for detecting unconfined-plasma events|US9074285B2|2007-12-13|2015-07-07|Lam Research Corporation|Systems for detecting unconfined-plasma events|
JP5661622B2|2008-07-07|2015-01-28|ラム リサーチ コーポレーションLam Research Corporation|プラズマ処理チャンバで用いるための真空ギャップを備えたプラズマ対向プローブ装置|
US8179152B2|2008-07-07|2012-05-15|Lam Research Corporation|Passive capacitively-coupled electrostaticprobe arrangement for detecting plasma instabilities in a plasma processing chamber|
US8901935B2|2009-11-19|2014-12-02|Lam Research Corporation|Methods and apparatus for detecting the confinement state of plasma in a plasma processing system|
CN103871816B|2012-12-17|2016-06-08|北京北方微电子基地设备工艺研究中心有限责任公司|用于匹配器的传感器及具有其的匹配器、等离子体设备|
US9337000B2|2013-10-01|2016-05-10|Lam Research Corporation|Control of impedance of RF return path|
US9401264B2|2013-10-01|2016-07-26|Lam Research Corporation|Control of impedance of RF delivery path|
CN105044469A|2015-04-24|2015-11-11|广东电网有限责任公司电力科学研究院|一种干式空心电抗器损耗检测方法及其检测装置|
法律状态:
2011-11-09| A621| Written request for application examination|Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111108 |
2013-05-13| A977| Report on retrieval|Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130513 |
2013-05-22| A131| Notification of reasons for refusal|Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130521 |
2013-08-17| A521| Written amendment|Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20130816 |
2013-10-23| TRDD| Decision of grant or rejection written|
2013-10-30| A01| Written decision to grant a patent or to grant a registration (utility model)|Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20131029 |
2013-11-28| A61| First payment of annual fees (during grant procedure)|Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20131120 |
2013-11-29| R150| Certificate of patent or registration of utility model|Ref document number: 5420562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
2016-11-15| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2017-11-14| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2018-11-13| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2019-11-19| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2020-11-11| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
2021-11-09| R250| Receipt of annual fees|Free format text: JAPANESE INTERMEDIATE CODE: R250 |
优先权:
申请号 | 申请日 | 专利标题
[返回顶部]